The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis.

نویسندگان

  • Toshiro Ito
  • Kian-Hong Ng
  • Tze-Soo Lim
  • Hao Yu
  • Elliot M Meyerowitz
چکیده

The Arabidopsis thaliana floral homeotic gene AGAMOUS (AG) plays a central role in reproductive organ (stamen and carpel) development. AG RNA is expressed in the center of floral primordia from a time prior to the initiation of stamen and carpel primordia until late in flower development. While early AG expression acts in specification of stamens and carpels, the role, if any, of continued AG expression in later flower development is unknown. To examine the timing of AG action and its possible late-stage functions, we performed a series of time-course experiments using a transgenic line with inducible AG activity in an ag homozygous mutant background. We show that AG controls late-stage stamen development, including anther morphogenesis and dehiscence, as well as filament formation and elongation. We further show that AG coordinates late stamen maturation by controlling a biosynthetic gene of the lipid-derived phytohormone jasmonic acid (JA). Expression analysis and in vivo binding of AG indicate that AG directly regulates the transcription of a catalytic enzyme of JA, DEFECTIVE IN ANTHER DEHISCENCE1. Our results indicate that stamen identity and differentiation control by AG is achieved by the regulation of different transcriptional cascades in different floral stages, with organ specification induced early, followed by phytohormone biosynthesis to coordinate stamen maturation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis.

Floral organs, whose identity is determined by specific combinations of homeotic genes, originate from a group of undifferentiated cells called the floral meristem. In Arabidopsis, the homeotic gene AGAMOUS (AG) terminates meristem activity and promotes development of stamens and carpels. To understand the program of gene expression activated by AG, we followed genome-wide expression during ear...

متن کامل

Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3.

The APETALA3 floral homeotic gene is required for petal and stamen development in Arabidopsis. APETALA3 transcripts are first detected in a meristematic region that will give rise to the petal and stamen primordia, and expression is maintained in this region during subsequent development of these organs. To dissect how the APETALA3 gene is expressed in this spatially and temporally restricted d...

متن کامل

Ectopic expression of LLAG1, an AGAMOUS homologue from lily (Lilium longiflorum Thunb.) causes floral homeotic modifications in Arabidopsis.

The ABC model for floral development was proposed more than 10 years ago and since then many studies have been performed on model species, such as Arabidopsis thaliana, Antirrhinum majus, and many other species in order to confirm this hypothesis. This led to additional information on flower development and to more complex molecular models. AGAMOUS (AG) is the only C type gene in Arabidopsis an...

متن کامل

Regulation of SUP expression identifies multiple regulators involved in arabidopsis floral meristem development.

During the course of flower development, floral homeotic genes are expressed in defined concentric regions of floral meristems called whorls. The SUPERMAN (SUP, also called FLO10) gene, which encodes a C2H2-type zinc finger protein, is involved in maintenance of the stamen/carpel whorl boundary (the boundary between whorl 3 and whorl 4) in Arabidopsis. Here, we show that the regulation of SUP e...

متن کامل

Floral homeotic genes are targets of gibberellin signaling in flower development.

Gibberellins (GAs) are a class of plant hormones involved in the regulation of flower development in Arabidopsis. The GA-deficient ga1-3 mutant shows retarded growth of all floral organs, especially abortive stamen development that results in complete male sterility. Until now, it has not been clear how GA regulates the late-stage development of floral organs after the establishment of their id...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 19 11  شماره 

صفحات  -

تاریخ انتشار 2007